Synthetic biology: from modules to systems

Ron Weiss

Department of Biological Engineering Department of Electrical Engineering and Computer Science MIT

RoSBNet, Oxford, Sept. 2009

Systems-level bioengineering

Program cell populations to perform various tasks reliably

Applications

Biomedical

- Tissue regeneration
- Diabetes
- Cancer therapy
- Artificial immune system

The 1st wave of synthetic biology

The 2nd wave of synthetic biology

Synthetic biology: A new engineering discipline

- Simplification
- Standardization
- Characterization
- Rapid prototyping
- Interchangeable parts
- Predictive models
- Modularity

- Self replication
- Self repair
- Adaptation
- Mutation
- Incomplete information
- Imprecise models
- Cellular context
- Rules of composition
- Noise

•

Proven engineering principles

Interesting/challenging aspects of biology

Synthetic biology: A new engineering discipline

Overview

- Basic modules
 - Digital, analog, multicellular
- Local rules / global behavior
 - Turing pattern formation (Ting Lu)
 - Conway's Game of Life (Jingjing Sun)
- Larger scale system design
 - Artificial tissue homeostasis

Modules implemented in Weiss lab

Modules implemented in Weiss lab

Useful CAD tools & mechanisms

Useful CAD tools & mechanisms

Global behavior \implies local rules

High level behavioral specification

Local rules of interaction

Turing patterns (Ting Lu)

- Simple local rules \rightarrow complex global behavior
- Non modular system
- Experimentally achievable using a reaction/diffusion system?
- How predictive are the mathematical models?
- Role of intuition and computation in circuit design?

Turing patterns: system design

Two morphogens

3OC12HSL: self activation, slow diffusion C4HSL: Inhibition, faster diffusion

which satisfy

Physical requirements for Turing pattern

- Short-range autocatalytic activation
- Long-range inhibition

cellular layers

Patterns from different simulation conditions

Search for best network structures

- Computational search for network variations enriched for Turing instabilities
 - Randomly chose parameter sets for exploring different network structures
 - Counted # of sets for each network that formed Turing instabilities

Examine role of parameter values

- Similarly, examined the effect of 3 Hill coefficients on pattern formation capability:
 - p(las)/3OC12HSL activation, p(rhl)/C4HSL activation, CI repression
- <u>Results:</u>
 - Hill coefficients of p(las) activation ≤ 1 never yield Turing instability
 - For p(rhl) activation, Hill coefficient ≤ 1 is 55% as likely to yield Turing instability as Hill coefficient ≥ 1
 - For CI repression, the relative likelihood is 37%

Experimental setup

Schematic illustration of experimental procedures

Patterns from various cell types

Turing patterns

Question: Do cells make decisions individually or collectively when forming these spatial patterns?

Patterns from toggle switch cells

A two-state switch

provides individual decision making

Circuit modified from Gardner et al. Nature 403 (2000).

Phase diagram for the toggle switch

Our communication-based system

Patterns from toggle switch cells

Mathematical model for Turing system

A deterministic reaction-diffusion model incorporating the major biochemical reactions and chemical diffusion

$$\begin{aligned} \textbf{3OC12HSL} \quad & \frac{\mathrm{d}U}{\mathrm{d}t} = \alpha_u I_u - \gamma_u U + D_u \nabla^2 U \\ \textbf{C4HSL} \quad & \frac{\mathrm{d}V}{\mathrm{d}t} = \alpha_v I_v - \gamma_v V + D_v \nabla^2 V \\ \textbf{Lasl} \quad & \frac{\mathrm{d}I_u}{\mathrm{d}t} = \alpha_{iu} F_1(X_1, C) - \gamma_{iu} I_u \\ \textbf{Rhll} \quad & \frac{\mathrm{d}I_v}{\mathrm{d}t} = \alpha_{iv} F_1(X_1, C) - \gamma_{iv} I_v \\ \textbf{Cl} \quad & \frac{\mathrm{d}C}{\mathrm{d}t} = \alpha_c F_2(X_2, L) - \gamma_c C \end{aligned}$$

where, $F_{1}(X_{1},C) = \frac{\left[1 + f_{1}\left(\frac{X_{1}}{K_{d1}}\right)^{\theta_{1}}\right]\left[1 + f_{2}^{-1}\left(\frac{C}{K_{d2}}\right)^{\theta_{2}}\right]}{\left[1 + \left(\frac{X_{1}}{K_{d1}}\right)^{\theta_{1}}\right]\left[1 + \left(\frac{C}{K_{d2}}\right)^{\theta_{2}}\right]}$ $F_{2}(X_{2},L) = \frac{\left[1 + f_{3}\left(\frac{X_{2}}{K_{d3}}\right)^{\theta_{3}}\right]\left[1 + f_{4}^{-1}\left(\frac{L}{K_{d4}}\right)^{\theta_{4}}\right]}{\left[1 + \left(\frac{X_{2}}{K_{d3}}\right)^{\theta_{3}}\right]\left[1 + \left(\frac{L}{K_{d4}}\right)^{\theta_{4}}\right]}$ $X_{1} = R_{u}U$ $X_{2} = \frac{R_{v}V}{(1 + U/K_{c3})}$ $R_{u} = \lambda_{u}I_{u}$ $R_{v} = \lambda_{v}\left(\frac{1 + f_{5}^{-1}(C/K_{d5})^{\theta_{5}}}{1 + (C/K_{d5})^{\theta_{5}}}\right)$ $L = \lambda_{l}\left(\frac{1 + f_{6}^{-1}\left(I/K_{d6}\right)^{\theta_{6}}}{1 + (I/K_{d6})^{\theta_{6}}}\right)$

Experiment

Experiment

Simulation (with noise)

Pattern modulation with IPTG

Nature, models, and synthetic biology

- Demonstrated control over emergent patterns
- Models (with noise) correlate well with experiments
 - Performing spectral analysis
- To achieve smoother patterns:
 - Different circuits, perhaps with more signals?
 - What are the limits?

Conway's Game of Life (Jingjing Sun)

- Interesting dynamics with a single signaling molecule
- Simple local rules → complex global behavior:
 - <u>Survival:</u>

2/3 neighbors

– <u>Birth:</u>

3 neighbors

<u>Death:</u>
≥4 or ≤1 neighbors

• Global behavior has been proven to be unpredictable

Conway's Game of Life in yeast

- Artificial cell-cell communication to allow yeast to detect neighboring population density
- Population density circuits
 - High threshold detection
 - Low threshold detection
- Cell killing mechanism

Artificial "quorum sensing" yeast

OD₆₆₀

Time (hr)

Comparison of quorum sensing

Comparison of quorum sensing

Quorum sensing simulation movies

Slow diffusion

Fast diffusion
Simulations of domain formation

Similar to the experimental observations, the population response becomes more "digital" as the diffusion rate increases.

Doxycycline-regulatable TR-SSRE promoters

Dense population detection and cell suicide

Yeast was transformed with the killer circuit. Cells were taken from initial transformation plate and resuspended. Around 500 cells were evenly spread on a 100mm petri dish with 10 ug/ul [Dox] and different IP concentrations. The number of surviving colonies is plotted as a function of exogenous [IP]

Population control: QS and cell suicide

Yeast were transformed with the IP synthesis and killer circuits. Cells were taken from the initial transformation plate and re-suspended in water. Around 500 cells were then evenly spread on a 100mm petri dish with 10 ug/ul [Dox] and different copper concentrations. The number of surviving colonies is plotted as a function of $[Cu^{2+}]$

LT killing with protein/protein interactions

LT: IP dosage response

http://www.sgul.ac.uk/depts/immunology/~dash/apoptosis/mito2.jpg

Complete Game-of-Life system

- Survival thresholds can be tuned with Dox, glucose, Cu^{2+sd}
- Integrate many mechanisms: enzymatic synthesis, cell-cell comm., phosphorylation, transcriptional regulation, protein/protein inhibitory binding, cell death

Game of Life (HT) microscope observations

- Time lapse movie of quorum sensing induced cell suicide
- Cell killing results in 'ghosts' these do not appear to alter growth patterns of live cells

Game of Life (HT) microscope observations

- Time lapse movie of quorum sensing induced cell suicide
- Cell killing results in 'ghosts' these do not appear to alter growth patterns of live cells

Game of Life agent based simulations

Game of Life agent based simulations

HT = Iow

HT = medium

HT = high

Game of Life simulations

While the behavior of any individual cell cannot be predicted, the overall behavior of the population perhaps can be predicted.

Applying synthetic biology to stem cell research

[Patrick Guye, Cil Purnick, Noah Davidsohn, Yingqing Li]

Fundamental question in tissue engineering:
 Can we create and maintain large scale spatially defined functional tissues?

Directed differentiation with cell fate regulators

• Endoderm: Gata4, Gata6, Sox17

J. Fujikura, *et al.*, Genes and Development, Vol. 16, pp. 784-789, 2002.

• Trophectoderm: Cdx2

H. Niwa, et. al, Cell, Vol. 123(5), pp. 917-929, 2005.

• Neuronal: Nkx2.2, Nkx6.1, Pax6, Ngn1

Ericson, *et al.*, Cell, Vol. 90, pp. 169-180, 1997.
J. Briscoe, *et al.*, Nature, Vol. 398, p.622-627, 1999.
T. Jessell, Nature Reviews Genetics, Vol. 1, pp. 21-29, 2000.
M. McCormick, *et al.*, Mol. and Cell. Bio., Vol. 16(10), pp. 5792-5800, 1996.

• Muscle: MyoD

R. Davis, H. Weintraub, A. B. Lassar, Cell Vol. 51, pp. 987-1000, 1987.

• Pancreas: Ngn3, Pax4, Nkx2.2, Pdx1

G. Gu, et al., Development Vol. 129, pp. 2447-2457, 2002.

- J. Wang, et al., Developmental Biology, Vol. 266, pp. 178-189, 2004.
- N. Lavon, et al., Stem Cells, Vol. 24, pp. 1923-1930, 2006.
- J. Heit, S. Karnik, S. Kim, Ann. Rev. Cell Dev. Biol. 22: 311-338, 2006.
- D. Sinner, et al., Development, Vol. 131, pp. 3069-3080, 2004
- M. Yasunaga, et al., Nature Biotech, Vol. 23(12), 1542-1550, 2005.

• Adipocytes: PPary

C. Vernochet, et al., FEBS Letters, Vol, 510, pp. 94-98, 2002.

A library of cell fate regulation 'parts'

Artificial tissue homeostasis for β cells

- 7.8% of the US population has diabetes
- In Diabetes Type I (10% of diabetics), auto-immune response (slowly) kills insulin-producing pancreatic β cells.

• <u>Goal:</u>

Maintain population level of β cells using auto-regulated differentiation of ES cells that counter-balances auto-immune attacks.

Complex system with 22 components <u>Design with 'known' modules!</u>

Goal: Population control

A self-timed genetic program for β cell differentiation

A self-timed genetic program for β cell differentiation

A self-timed genetic program for β cell differentiation

Insulin-production assay with C-peptide antibodies

GAT	FA4
Ng	n3
Do	X

GATA4 Ngn3 Pdx1 Dox/aTc CCE

Beta TC6

Teaching stem cells a new language

Microscope observations +AHL

- AHL

Green

Information processing: toggle switch

Logic to regulate differentiation

Artificial tissue homeostasis (version 0.1)

Logic to regulate differentiation

Artificial tissue homeostasis (version 0.2)

Simulation of symmetry breaking + commit

Simulation of artificial tissue homeostasis

Blue = uncommitted Red = committed

System optimization

Issue:

quorum sensing hysteresis results in non-optimal commitment

• <u>Approach:</u>

Use sensitivity analysis to identify important parameters and genetic algorithms to optimize parameter set and remove hysteresis

Simulation of artificial tissue homeostasis

Blue = uncommitted Red = committed

Modules to systems

Synthetic biology projects

Summary

- Implemented a variety of basic modules
 - Digital cascades, pulse generator, band detect, population control, communication, toggle switch
- Building and analyzing local ↔ global systems
 - Turing patterns, Conway's Game of Life, Predator-prey
- Pursuing applications
 - Programmed tissue regeneration, artificial tissue homeostasis, artificial immune system, RNAi-based cancer therapy
- Exploring system design principles and technologies
 - Hybrid circuits, multicellular, larger scale systems-level integration

Be inspired by Biology / CS / EE / MechEng / CivilEng / ...

then

Design it your way

but

Don't underestimate biological complexity!
Acknowledgments

• MIT (current):

- Jon Babb
- Noah Davidsohn
- Steve Firsing
- Saurabh Gupta
- Patrick Guye
- Yinqing Li
- Ting Lu
- Cil Purnick
- Jingjing Sun
- Liiliana Wroblewska

• Princeton (former):

- Ernesto Andrianantoandro
- Subhayu Basu
- Ming-Tang Chen
- David Coleman
- Caroline DeHart
- Yoram Gerchman
- Abigail Kalmbach
- David Karig
- Jerome Ku
- Sara Hooshangi
- Rishabh Mehreja
- Thomas Mason
- Miles Miller
- Ilka Netravali
- Tom Peterson
- Allegra Petti
- Sairam Subramanian
- Stephan Thiberge

- Princeton:
 - Craig Arnold
 - Ken Steiglitz
 - Hersch Rabitz
- Mt. Sinai:
 - Ihor Lemischka
- Caltech:
 - Frances Arnold
 - Jared Leadbetter
 - Yohei Yokobayashi
 - Cynthia Collins

- Duke:
 - Lingchong You
- Harvard
 - Kobi Benenson
- MIT:
 - Tom Knight
 - Gerald J. Sussman
 - Hal Abelson
 - Radhika Nagpal
 - Dylan Hirsch-Shell

Funding:

- DARPA BIOS
- NSF QuBIC
- NSF EMT
- NSF Career
- DOE
- Princeton
- NJ Spinal Cord

Questions?

