

Stochastic Gene Expression: Modeling, Analysis, and Identification

Mustafa Khammash

University of California, Santa Barbara

Outline

- Randomness at the molecular level
- Exploiting the randomness
- Stochastic modeling framework
- Simulation and Analysis Methods
- Identification from Noise
- Conclusions

Randomness at the Molecular Level

Stochastic Influences on Phenotype

Capturing Randomness in Gene Expression Models

$\frac{d[mRNA]}{dt} = -\gamma_r[mRNA] + k_r$ $\frac{d[protein]}{dt} = -\gamma_p[protein] + k_p[mRNA]$

Capturing Randomness in Gene Expression Models

Stochastic model

- Probability a single mRNA is transcribed in time dt is $k_r dt$.
- Probability a single mRNA is degraded in time dt is $(\#mRNA) \cdot \gamma_r dt$

Fluctuations at Small Copy Numbers

Fluctuations at Small Copy Numbers

Exploiting the Randomness

Noise Induced Oscillations

Circadian rhythm

- Oscillations disappear from deterministic model after a small reduction in deg. of repressor
- (Coherence resonance) Regularity of noise induced oscillations can be manipulated by tuning the level of noise [*EI-Samad, Khammash*]

Stochastic Focusing: Fluctuation Enhanced Sensitivity

Signaling Circuit

Ø

$$\phi \quad \stackrel{k}{\underset{k_a S}{\rightleftharpoons}} \quad I \stackrel{k_p}{\rightarrow} P \stackrel{1}{\xrightarrow{}} \\ \phi \quad \stackrel{k_s}{\underset{k_d}{\rightleftharpoons}} \quad S$$

- Stochastic mean value different from deterministic steady state
- Noise *enhances* signal!

Johan Paulsson, Otto G. Berg, and Måns Ehrenberg, PNAS 2000

Bacterial Competence

- Competence is a process by which bacteria takes up foreign DNA
- Only a fraction of cells become competent

Stochastic Modeling Framework

A Simple Example

mRNA copy number N(t) is a random variable

Transcription: Probability a single mRNA is transcribed in time dt is k dt

Degradation: Probability a single mRNA is degraded in time dt is $n\gamma dt$

Find p(n,t), the probability that N(t) = n.

 $P(n, t + dt) = P(n - 1, t) \cdot kdt$ $Prob.\{N(t) = n - 1 \text{ and } mRNA \text{ created in } [t, t + dt)\}$ $+ P(n + 1, t) \cdot (n + 1)\gamma dt$ $Prob.\{N(t) = n + 1 \text{ and } mRNA \text{ degraded in } [t, t + dt)\}$ $+ P(n, t) \cdot (1 - kdt)(1 - n\gamma dt)$ $Prob.\{N(t) = n \text{ and}$ $mRNA \text{ not created nor degraded in } [t, t + dt)\}$

$$P(n, t + dt) - P(n, t) = P(n - 1, t)kdt + P(n + 1, t)(n + 1)\gamma dt - P(n, t)(k + n\gamma)dt + O(dt^2)$$

Dividing by dt and taking the limit as $dt \rightarrow 0$

The Chemical Master Equation $\frac{d}{dt}P(n,t) = kP(n-1,t) + (n+1)\gamma P(n+1,t) - (k+n\gamma)P(n,t)$

mRNA Stationary Distribution

We look for the stationary distribution $P(n,t) = p(n) \ \forall t$

The stationary solution satisfies: $\frac{d}{dt}P(n,t) = 0$

From the Master Equation ...

$$(k+n\gamma)p(n) = kp(n-1) + (n+1)\gamma p(n+1)$$

$$n = 0 \qquad kp(0) = \gamma p(1)$$

 $n = 1 \qquad kp(1) = 2\gamma p(2)$

$$n = 2 \qquad kp(2) = 3\gamma p(3)$$

$$kp(n-1) = n\gamma \ p(n)$$

 $kp(n-1) = n\gamma p(n)$ We can express p(n) as a function of p(0):

$$p(n) = \frac{k}{\gamma} \frac{1}{n} p(n-1)$$

$$= \left(\frac{k}{\gamma}\right)^2 \frac{1}{n} \frac{1}{n-1} p(n-2)$$

$$\vdots$$

$$= \left(\frac{k}{\gamma}\right)^n \frac{1}{n!} p(0)$$

We can solve for p(0) using the fact $\sum_{n=1}^{\infty} p(n) = 1$

$$1 = \sum_{n=0}^{\infty} \left(\frac{k}{\gamma}\right)^n \frac{1}{n!} p(0)$$

= $e^{k/\gamma} p(0) \implies p(0) = e^{-k/\gamma}$

$$p(n) = e^{-a} \frac{a^n}{n!} \qquad a = \frac{k}{\gamma}$$

Poisson Distribution

Poisson, a = 3

Stationary distribution:

$$P(n) = e^{-a} \frac{a^n}{n!} \qquad a = \frac{k}{\gamma}$$

Poisson Distribution

Formulation of Stochastic Chemical Kinetics

Reaction volume= Ω

Key Assumptions

(Well-Mixed) The probability of finding any molecule in a region $d\Omega$ is given by $\frac{d\Omega}{\Omega}$.

(**Thermal Equilibrium**) The molecules move due to the thermal energy. The reaction volume is at a constant temperature T. The velocity of a molecule is determined according to a Boltzman distribution:

$$f_{v_x}(v) = f_{v_y}(v) = f_{v_z}(v) = \sqrt{\frac{m}{2\pi k_B T}} e^{-\frac{m}{2k_B T}v^2}$$

Stochastic Chemical Kinetics

• (*N*-species) S_1, \ldots, S_N . Population of each is an integer r.v.:

 $X(t) = [X_1(t), \dots, X_N(t)]^T$

- (*M*-reactions) The system's state can change through any one of *M* reaction: $R_k : k \in \{1, 2, ..., M\}$.
- (State transition) Firing of reaction R_k causes a state transition from X(t) = x to $X(t^+) = x + s_k$.

Stoich. matrix:
$$S = \begin{bmatrix} s_1 & \cdots & s_M \end{bmatrix}$$

• (Transition Probability) The probability that reaction R_k fires in the next dt time units is: $w_k(x)dt$.

Example: $w_1(x) = c_1$; $w_2(x) = c_2 \cdot x_1 x_2$; $w_3(x) = c_3 x_1$;

The Chemical Master Equation

X(t) is Continuous-time discrete-state Markov Chain

$$p(x,t) := prob(X(t) = x)$$

The Chemical Master Equation (Forward Kolmogorov Equation)

$$\frac{dp(x,t)}{dt} = -p(x,t)\sum_{k}w_k(x) + \sum_{k}p(x-s_k,t)w_k(x-s_k)$$

From Stochastic to Deterministic

Define $X^{\Omega}(t) = \frac{X(t)}{\Omega}$.

Question: How does $X^{\Omega}(t)$ relate to $\Phi(t)$?

Fact: Let $\Phi(t)$ be the deterministic solution to the reaction rate equations

$$\frac{d\Phi}{dt} = Sf(\Phi), \ \Phi(0) = \Phi_0.$$

Let $X^{\Omega}(t)$ be the stochastic representation of the same chemical systems with $X^{\Omega}(0) = \Phi_0$. Then for every $t \ge 0$:

$$\lim_{\Omega\to\infty}\sup_{s\leq t} |X^{\Omega}(s)-\Phi(s)|=0 \ a.s.$$

Simulation and Analysis Tools

1. Sample Paths Computation

Gillespie's Stochastic Simulation Algorithm:

To each of the reactions $\{R_1, \ldots, R_M\}$ we associate a RV τ_i : τ_i is the time to the next firing of reaction R_i

Fact 0: τ_i is exponentially distributed with parameter w_i

We define two new RVs:

 $\tau = \min_{i} \{\tau_i\}$ (Time to the next reaction) $\mu = \arg\min_{i} \{\tau_i\}$ (Index of the next reaction)

Fact 1: τ is exponentially distributed with parameter $\sum_{i} w_i$ Fact 2: $P(\mu = k) = \frac{w_k}{\sum_{i} w_i}$

Stochastic Simulation Algorithm

- **Step 0** Initialize time t and state population x
- Step 1 Draw a sample au from the distribution of au

• Step 2 Draw a sample μ from the distribution of μ

• **Step 3** Update time: $t \leftarrow t + \tau$. Update state: $x \leftarrow x + s_{\mu}$.

2. Moment Computations

Let $w(x) = [w_1(x), \ldots, w_M(x)]^T$ be the vector of propensity functions

Moment Dynamics

$$\frac{dE[X]}{dt} = S E[w(X)]$$

$$\frac{dE[XX^T]}{dt} = SE[w(X)X^T] + E[Xw^T(X)]S^T + S diag(E[w(X)]) S^T$$

- Affine propensity. Closed moment equations.
- Quadratic propensity. Not generally closed.
 - Mass Fluctuation Kinetics (Gomez-Uribe, Verghese)
 - Derivative Matching (Singh, Hespanha)

3. SDE Approximation

Let $X^{\Omega}(t) := \frac{X(t)}{\Omega}$

Write $X^{\Omega} = \Phi_0(t) + \frac{1}{\sqrt{\Omega}} V^{\Omega}$ where $\Phi_0(t)$ solves the deterministic RRE $\frac{d\Phi}{dt} = Sf(\Phi)$

Linear Noise Approximation

 $V^{\Omega}(t) \to V(t) \text{ as } \Omega \to \infty$, where $dV(t) = A(t)V(t)dt + B(t)dW_t$

$$A(t) = \frac{d[Sf(\Phi)]}{d\Phi}(\Phi_0(t)), \qquad B(t) := S\sqrt{diag[f(\Phi_0(t))]}$$

Linear Noise Approximation: $X^{\Omega}(t) \approx \Phi(t) + \frac{1}{\sqrt{\Omega}}V(t)$

Density Computation

Goal: Compute p(x,t), the probability that X(t) = x.

Enumerate the state space: $\mathcal{X} = \{x_1, x_2, x_3, \ldots\}$ Form the probability density state vector $P(\mathcal{X}, \cdot) : \mathbb{R}^+ \to \ell_1$

$$P(X,t) := [p(x_1,t) \quad p(x_2,t) \quad p(x_3,t) \quad \dots]^T$$

The Chemical Master Equation (CME):

$$\frac{dp(x,t)}{dt} = -p(x,t)\sum_{k}w_k(x) + \sum_{k}p(x-s_k,t)w_k(x-s_k)$$

can now be written in matrix form:

$$\dot{P}(\mathcal{X},t) = \mathbf{A} \cdot P(\mathcal{X},t)$$

• A finite subset is appropriately chosen

- A finite subset is appropriately chosen
- The remaining (infinite) states are projected onto a single state (red)

- A finite subset is appropriately chosen
- The remaining (infinite) states are projected onto a single state (red)
- Only transitions into removed states are retained

The projected system can be solved exactly!

Finite Projection Bounds

Notation: For a matrix A, let A_J to be the principle submatrix of A indexed by J, where $J = [m_1 \dots m_n]$.

Projection Error Bounds Consider any Markov process described by the Forward Kolmogorov Equation:

$$\dot{P}(\mathcal{X};t) = A \cdot P(\mathcal{X};t).$$

If for an indexing vector J: $1^T \exp(A_J T) P(\mathcal{X}_J; 0) \ge 1 - \epsilon$, then

$$\left\| \begin{bmatrix} P(\mathcal{X}_J; t) \\ P(\mathcal{X}_{J'}; t) \end{bmatrix} - \begin{bmatrix} \exp(A_J t) P(\mathcal{X}_J; 0) \\ 0 \end{bmatrix} \right\|_1 < \epsilon \qquad t \in [0, T]$$

Munsky and Khammash, Journal of Chemical Physics, 2006

Example: Analysis of A Synthetic Stochastic Switch

Using Noise to Identify Model Parameters

Why use noise?

Identification from Moment Information

Identifiability

Can one identify the parameters $\lambda = \{k_1, \gamma_1, k_2, \gamma_2, k_{21}\}$ from measurements of the moments $\mathbf{v}(t)$?

Identifying Using Steady-State Moments

Can the stationary distribution be used to identify all the parameters?

$$\mathbf{v}(t) := \begin{bmatrix} E\{x\} & E\{x^2\} & E\{y\} & E\{y^2\} & E\{xy\} \end{bmatrix}^T$$

$$\mathbf{v}_{\infty} = \lim_{t \to \infty} [v_1, v_2, v_3, v_4, v_5]^T$$

Full Identifiability with Stationary Moments

• Full identifiability is impossible using only v_{∞} .

Munsky et. al, MSB, 2009

• Identifiability is possible if $\lim_{t\to\infty} E[x(t)x(t+s)]$ is available.

Cinquemani et al, lect. notes comp. sci, 2009

Identifiability from Transient Time-Measurements

$$\mathbf{v}(t) := \begin{bmatrix} E\{x\} & E\{x^2\} & E\{y\} & E\{y^2\} & E\{xy\} \end{bmatrix}^T$$

Multiple Measurements

Suppose $\mathbf{v}_j := \mathbf{v}(t_j)$ has been measured at equally separated points in time $\{t_0, t_1, \ldots, t_m\}$

Identifiability with Multiple Moment Measurements

For m = 6 the model parameters are *identifiable*.

$$\mathbf{G} = \begin{bmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_6 \end{bmatrix} \begin{bmatrix} \mathbf{v}_0 & \dots & \mathbf{v}_5 \\ 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix}$$
$$A = \frac{1}{\tau} \log(\mathbf{G}) \qquad \mathbf{b} = -(\mathbf{I} - \mathbf{G})^{-1} \mathbf{A} \mathbf{v}$$

Identification with Two Measurements

Identifiability of Transcription Parameters

Suppose the mean and variance are known at two times $t_0 < t_1 < \infty$, and define $(\mu_0, \sigma_0) := (\mu(t_0), \sigma(t_0))$ and $(\mu_1, \sigma_1) := (\mu(t_1), \sigma(t_1))$.

Then the transcription parameters are identifiable, and

$$\gamma = -\frac{1}{2\tau} \log\left(\frac{\sigma_1^2 - \mu_1}{\sigma_0^2 - \mu_0}\right) \qquad k = \gamma \frac{\mu_1 - \exp(-\gamma \tau)\mu_0}{1 - \exp(-\gamma \tau)}. \quad (\tau := t_1 - t_0)$$

Identifiability of Transcription & Translation Parameters

$$\mathbf{v}(t) := \begin{bmatrix} E\{x\} & E\{x^2\} & E\{y\} & E\{y^2\} & E\{xy\} \end{bmatrix}^T$$

- Given $\mathbf{v}(t_0)$ and $\mathbf{v}(t_1)$, identifiability of all parameters $k_1, k_2, \gamma_1, \gamma_2$ is generically possible.
- An expression exists for finding the parameters.

Using Densities to Identify Network Parameters

- Moment equations can be written only in special cases.
- Densities (distributions) contain much more information than first two moments.
- Using the Chemical Master Equation, we propose to use density measurements for model identification.

Using Density:

Suppose we measure P at different times: $P(t_0), P(t_1), \ldots, P(t_{N-1})$

We can use these to identify unknown network parameters λ :

```
Find \lambda subject to

\dot{\mathbf{P}}^{FSP} = A(\lambda)\mathbf{P}^{FSP}

\mathbf{P}^{FSP}(t_0) = \mathbf{P}(t_0)

\mathbf{P}^{FSP}(t_1) = \mathbf{P}(t_1)

\vdots

\mathbf{P}^{FSP}(t_{N-1}) = \mathbf{P}(t_{N-1})
```


Identification of lac Induction

B. Munsky, B. Trinh, M. Khammash, *Nature Molecular Systems Biology*, in press.

ΨŲ

Conclusions

- Randomness "noise" leads to cell-cell variability
 - Stochastic models are necessary
- Some stochastic analysis tools available (more needed)
 - Kinetic Monte Carlo
 - Moment approximation
 - Linear noise approximation (van Kampen)
 - Density computation (FSP)
- Noise reveals network parameters
 - Enabling technologies: flow cytometry and FISH/microscopy
 - A small number of transient measurements suffices
 - FSP exploits full pdf measurements
 - Cellular noise (process noise) vs. measurement noise (output noise)

Acknowledgement

- Brian Munsky, UCSB, LANL
- Brooke Trinh UCSB (lac induction)