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Randomness at the Molecular Level



Stochastic Influences on Phenotype

Fingerprints of identical twins Cc, the first cloned cat and her genetic mother

variability in gene expression

gen ..gen gengen

J. Raser and E. O’Shea,  Science, 1995.  J. Raser and E. O’Shea,  Science, 1995.  

Piliated Unpiliated
Elowitz et al, Science 2002



Capturing Randomness in Gene Expression Models

Deterministic model
γp

kr

kp

γr

φ

φ

DNA

mRNA

protein



• Probability a single mRNA is transcribed in
time dt is krdt.

• Probability a single mRNA is degraded in
time dt is (#mRNA) · γrdt

Stochastic model
γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

...

Capturing Randomness in Gene Expression Models



Fluctuations at Small Copy Numbers
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Fluctuations at Small Copy Numbers

γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

Cv = coefficient of variation =
standard deviation

mean

(mRNA)

(protein)



Exploiting the Randomness



Noise Induced Oscillations

Circadian rhythm

Vilar, Kueh, Barkai, Leibler, PNAS 2002

• Oscillations disappear from deterministic model after a small reduction in deg. of repressor
• (Coherence resonance) Regularity of noise induced oscillations can be manipulated 
   by tuning the level of noise [El-Samad, Khammash]



ks reduced by 50%

Stochastic Focusing: Fluctuation Enhanced Sensitivity

•  Stochastic mean value different from 
    deterministic steady state
•  Noise enhances signal! 

Johan Paulsson , Otto G. Berg , and Måns Ehrenberg, PNAS 2000

stochastic

deterministic

0 10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

400

Time

N
u

m
b

e
r
 o

f 
M

o
le

c
u

le
s

 o
f 

P

Signaling Circuit

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!
"

!
#!
$
"

!
#%
"

!
#%
$
"

!
#&
"

!
#&
$
"

S

!
"

!
#
!
$
"

!
#
%
"

!
#
%
$
"

!
#
&
"

!
#
&
$
"

!

"

!

#

!

$

"

!

#

%

"

!

#

%

$

"

!

#

&

"

!

#

&

$

"

!
"

!
#
!
$
"

!
#
%
"

!
#
%
$
"

!
#
&
"

!
#
&
$
"

P

mean

before 
shift

after 
shift



©!2006!Nature Publishing Group!

!

of comS is, however, known to be complex, having several transcrip-
tional inputs (Supplementary Fig. S1)19–21. To test the prediction of
the MeKS model we constructed a strain containing copies of the
PcomG and PcomS promoters expressing cfp and yfp, respectively. As
shown in Fig. 3a and SupplementaryMovie 2, all cells express PcomS to
varying degrees. In cells that become competent, PcomG activity
increases as PcomS activity decreases. Later, as PcomG activity shuts
off and septation begins, PcomS activity increases again. This striking
negative correlation between PcomG and PcomS activities is present
during both entry and exit from competence, although it is more
closely synchronized during entry (Fig. 3b). This behaviour is
representative of data obtained from all competent cells of the
same strain (n ¼ 31) (Fig. 3c), and is consistent with negative

regulation of comS by ComK. Furthermore, the negative correlation
is specific to competence, as is evident from the behaviour of the
non-competent sister cell in Fig. 3b.
A fundamental question is whether initiation of competence is

stochastic or affected by memory of previous events. Escape from
competence returns promoter activities to pre-competence levels,
suggesting the possibility of successive episodes of competence.
Indeed, as shown in Fig. 3d, two consecutive competence events
can be observed in a single cell lineage, showing that cells retain the
potential to re-initiate competence. In fact, re-initiation occurred
with a frequency of 6.0 ^ 2.0% (n ¼ 9 events out of 151), not
significantly different from the overall competence frequency
(3.6 ^ 0.7%). Repeated competence events are neither favoured
nor suppressed. This evidence for stochastic initiation of competence
is further supported by analysis of competence events in sister cell
pairs (Supplementary Information). Cells were not significantly
more or less likely to become competent if their sister became
competent (conditional frequency ¼ 4.1 ^ 0.9%, n ¼ 19 events
out of 463). When two sisters do become competent together, the
amount of time one spends in competence is uncorrelated with that
of its sister cell (Kolmogorov–Smirnov test; n ¼ 36). These results are
consistent with a stochastic and memory-less model for competence
initiation and duration.

Figure 1 | Stress response in B. subtilis and the core competence circuit.
a, Snapshot of a B. subtilis microcolony in nutrient-limited conditions. cfp
expression from PcomG is shown in red. Inset: a flow chart illustrating
developmental paths connecting the vegetative, spore forming and
competent states. b, Map of interactions within the core competence circuit
(MeKS). The transcriptional autoregulatory positive feedback loop of ComK
and the ComS-mediated indirect negative feedback loop are depicted in
orange and purple, respectively. ComS competes with ComK for degradation
by the MecA–ClpP–ClpC complex, effectively interfering with degradation of
ComK (curved purple inhibitory arrow). The dashed purple line from ComK
toPcomSdenotes indirect repression. The activities of the promoters labelled in
red, blue and green were measured in this study. These colours are used to
represent the corresponding promoters throughout the figures.

Box 1 |The dynamical model of competence induction

To understand how the MeKS network structure determines the
dynamics of competence, we built a mathematical model
constrained by experimental observations (see Supplementary
Information). This model can be reduced to a system of two
stochastic ordinary differential equations incorporating both the
direct positive and the ComS-mediated negative feedback loops of
ComK. In dimensionless form:

dK

dt
¼ ak þ

bkKn

kn0 þKn
2

K

1þKþ S
ð1Þ

dS

dt
¼ bs

1þ K=k1
! "p 2

S

1þKþ S
þ yðtÞ ð2Þ

Here, K and S represent the concentration levels of ComK and ComS
protein, respectively. ak and bk represent minimal and fully activated
rates of ComK production, respectively. k0 is the concentration of
ComK required for 50% activation. The cooperativities of ComK
auto-activation and ComS repression are parameterized by the Hill
coefficients n and p, respectively. Expression of ComS has maximum
rate bs and is half-maximal when K ¼ k 1. Enzymatic MecA-mediated
degradation affects both ComK and ComS; the form of the
corresponding nonlinear degradation terms expresses a competitive
mechanism, which is the only source of coupling from ComS to
ComK. Random fluctuations in ComS expression are represented by
a noise term y(t) (see Supplementary Information for a more
detailed analysis).
The dynamical behaviour of equations (1) and (2) without noise

can be analysed graphically by plotting their nullclines and vector
field in the ComK–ComS phase space (Fig. 4a) for appropriate
parameters (given in the Supplementary Information). This analysis
reveals three fixed points: a stable node at low ComK (the
vegetative state) and two unstable fixed points. Of these, the one at
intermediate ComK is an unstable saddle and the one at high ComK
(the competent state) is an unstable spiral. No limit-cycle behaviour
coexists with the stable vegetative state in this parameter region
(see Supplementary Information). Under these conditions, the
system is capable of excitable behaviour: relatively small
perturbations from the vegetative state may cause long excursions
through phase space around the unstable spiral at high ComK (that
is, through the competence region), as determined by the vector
field. The vegetative state can be perturbed by noise in the
expression of either ComK or ComS, leading to these transient
differentiation events. Samples of such trajectories, generated by
numerical integration of the model, are superimposed as pink lines
in Fig. 4a and plotted against time in Fig. 4b.
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Figure 2: This figure shows 7 different runs of SSA. Each color is a different run.
The cell takes a long exit trajectory, this figure shows that starting from the same
initial conditions out of 7 cells only 2 enter in competence.

Figure 3: This is a single SSA run. The high level of ComK (shown in blue),
as well as the negative correlation between ComK and ComS (show in red) is a
characteristic of competence.

8

Bacterial Competence

• Competence is a process by which bacteria takes up foreign DNA 

• Only a fraction of cells become competent

competence

Suel et al, 2006



Stochastic Modeling Framework



γ

k

N

Degradation: Probability a single mRNA
is degraded in time dt is nγdt

A Simple Example

φ

DNA

mRNA
mRNA copy number N(t) is a random variable

Transcription: Probability a single mRNA
is transcribed in time dt is krdt

n− 10 1 2 n n + 1.....

k k k k

(n + 1)γnγγ

.....

k k

(n− 1)γ2γ 3γ



n− 10 1 2 n n + 1.

k k k k

(n + 1)γnγγ

.

k k

(n− 1)γ2γ 3γ

Find p(n, t), the probability that N(t) = n.

P (n, t + dt) = P (n− 1, t) · kdt

+ P (n + 1, t) · (n + 1)γdt

+ P (n, t) · (1− kdt)(1− nγdt)

Prob.{N(t) = n− 1 and mRNA created in [t,t+dt)}

Prob.{N(t) = n + 1 and mRNA degraded in [t,t+dt)}

Prob.{N(t) = n and
mRNA not created nor degraded in [t,t+dt)}

P (n, t + dt)− P (n, t) = P (n− 1, t)kdt + P (n + 1, t)(n + 1)γdt− P (n, t)(k + nγ)dt

+O(dt
2)

Dividing by dt and taking the limit as dt→ 0

d

dt
P (n, t) = kP (n− 1, t) + (n + 1)γP (n + 1, t)− (k + nγ)P (n, t)

The Chemical Master Equation

Key Question:



We look for the stationary distribution

From the Master Equation ...

n = 0 kp(0) = γp(1)

...

mRNA Stationary Distribution

P (n, t) = p(n) ∀t

(k + nγ)p(n) = kp(n− 1) + (n + 1)γp(n + 1)

The stationary solution satisfies: d
dtP (n, t) = 0

kp(1) = 2γp(2)

n = 2 kp(2) = 3γp(3)

n = 1

kp(n− 1) = nγ p(n)



kp(n− 1) = nγ p(n) We can express p(n) as a function of p(0):

p(n) = e−aan

n!

We can solve for p(0) using the fact
∞�

n=0
p(n) = 1

⇒

Poisson Distribution

1 =
∞�

n=0

�
k

γ

�n 1

n!
p(0)

= ek/γ p(0) p(0) = e−k/γ

a =
k

γ

p(n) =
k

γ

1

n
p(n− 1)

=

�
k

γ

�2 1

n

1

n− 1
p(n− 2)

...

=

�
k

γ

�n 1

n!
p(0)
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n!

Poisson, a = 3

Stationary distribution:



Formulation of Stochastic Chemical Kinetics

Reaction volume=Ω

Key Assumptions

(Well-Mixed) The probability of finding any molecule in a region dΩ is
given by dΩ

Ω .

(Thermal Equilibrium) The molecules move due to the thermal energy.
The reaction volume is at a constant temperature T . The velocity of a
molecule is determined according to a Boltzman distribution:

fvx(v) = fvy(v) = fvz(v) =

�
m

2πkBT
e
− m

2kBT v2



Example: w1(x) = c1; w2(x) = c2 · x1x2; w3(x) = c3x1;

Stoich. matrix: S =
�

s1 · · · sM

�

• (N-species) S1, . . . ,SN . Population
of each is an integer r.v.:

X(t) = [X1(t), . . . , XN(t)]T

Stochastic Chemical Kinetics
p
o
p
u
la

ti
o
n

o
f

S
2

population of S1

1

2 3 4

56

7

8

0 1 2 3 4 5 6 7

0
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3
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7

...

...

• (State transition) Firing of reac-
tion Rk causes a state transition
from X(t) = x to X(t+) = x + sk.

• (M-reactions) The system’s state
can change through any one of M

reaction: Rk : k ∈ {1,2, . . . , M}.

• (Transition Probability) The probability that reaction Rk fires in
the next dt time units is: wk(x)dt.



p(x, t) := prob(X(t) = x)

dp(x, t)

dt
= −p(x, t)

�

k

wk(x) +
�

k

p(x− sk, t)wk(x− sk)

The Chemical Master Equation

The Chemical Master Equation

X(t) is Continuous-time discrete-state Markov Chain

(Forward Kolmogorov Equation)



Define XΩ
(t) =

X(t)
Ω

.

Question: How does XΩ
(t) relate to Φ(t)?

 From Stochastic to Deterministic

Fact: Let Φ(t) be the deterministic solution to the reaction rate equa-
tions

dΦ

dt
= Sf(Φ), Φ(0) = Φ0.

Let XΩ(t) be the stochastic representation of the same chemical sys-
tems with XΩ(0) = Φ0. Then for every t ≥ 0:

lim
Ω→∞

sup
s≤t

���XΩ(s)−Φ(s)
��� = 0 a.s.



Simulation and Analysis Tools



1. Sample Paths Computation

τi is the time to the next firing of reaction Ri

We define two new RVs:

τ = min
i

{τi} (Time to the next reaction)

µ = argmin
i

{τi} (Index of the next reaction)

Fact 1: τ is exponentially distributed with parameter
�

i
wi

To each of the reactions {R1, . . . , RM} we associate a RV τi:

Fact 2: P(µ = k) =
wk�

i
wi

Fact 0: τi is exponentially distributed with parameter wi

Gillespie’s Stochastic Simulation Algorithm:



• Step 3 Update time: t← t + τ . Update state: x← x + sµ.

• Step 0 Initialize time t and state population x

r2 ∈ U([0,1])

time (s)

• Step 2 Draw a sample µ from the distribution of µ

1

0

1 2 3 4 5
reaction index

Cumulative distribution of µ
1

0

Stochastic Simulation Algorithm

(w1 + w2)/
�

k wk

w1/
�

k wk

(w1 + w2 + w3 + w4)/
�

k wk
(w1 + w2 + w3)/

�
k wk

µ

r1 ∈ U([0,1])

Cumulative distribution of τ : F (t) = 1− exp(−
�

k
wkt)

τ = 1�
k wk

log 1
1−r1

• Step 1 Draw a sample τ from the distribution of τ



Let w(x) = [w1(x), . . . , wM(x)]T be the vector of propensity functions

• Affine propensity. Closed moment equations.

• Quadratic propensity. Not generally closed.

– Mass Fluctuation Kinetics (Gomez-Uribe, Verghese)

– Derivative Matching (Singh, Hespanha)

2. Moment Computations

dE[X]

dt
= S E[w(X)]

dE[XXT ]

dt
= SE[w(X)XT ] + E[XwT (X)]ST + S diag(E[w(X)]) ST

Moment Dynamics 



where dV (t) = A(t)V (t)dt + B(t)dWt

Write XΩ = Φ0(t) + 1√
Ω

V Ω where Φ0(t) solves the deterministic RRE

dΦ

dt
= Sf(Φ)

Linear Noise Approximation: XΩ(t) ≈ Φ(t) + 1√
Ω

V (t)

3. SDE Approximation

Let XΩ(t) := X(t)
Ω

Linear Noise Approximation

V Ω(t)→ V (t) as Ω→∞,

A(t) =
d[Sf(Φ)]

dΦ
(Φ0(t)), B(t) := S

�
diag[f(Φ0(t))]



ω (white gaussian noise)

+
Ωφ̄ (mean)

Ẏ = AY +
√

ΩB ω

Y (t) =
√

ΩV (t)

X(t)



Enumerate the state space: X = {x1, x2, x3, . . .}

P (X , ·) : R+ → �1

P (X , t) := [p(x1, t) p(x2, t) p(x3, t) . . . ]T

Ṗ (X , t) = A · P (X , t)

Goal: Compute p(x, t), the probability that X(t) = x.

Density Computation

The Chemical Master Equation (CME):

 can now be written in matrix form:

Form the probability density state vector

dp(x, t)

dt
= −p(x, t)

�

k

wk(x) +
�

k

p(x− sk, t)wk(x− sk)



The Finite State Projection Approach



The Finite State Projection Approach

• A  finite subset is appropriately 
chosen



The Finite State Projection Approach

• A  finite subset is appropriately 
chosen

• The remaining (infinite) states are 
projected onto a single state (red)



The Finite State Projection Approach

• Only transitions into removed 
states are retained

• A  finite subset is appropriately 
chosen

• The remaining (infinite) states are 
projected onto a single state (red)

The projected system can be solved exactly!



Notation: For a matrix A, let AJ to be the principle submatrix
of A indexed by J, where J = [m1 . . . mn].

Projection Error Bounds Consider any Markov process de-
scribed by the Forward Kolmogorov Equation:

Ṗ (X ; t) = A · P (X ; t).

If for an indexing vector J: 1T exp(AJT )P (XJ; 0) ≥ 1− �, then
�����

�
P (XJ; t)
P (XJ �; t)

�

−
�
exp(AJt)P (XJ; 0)

0

������
1

< � t ∈ [0, T ]

Finite Projection Bounds

Munsky and Khammash, Journal of Chemical Physics, 2006



v inhibits the production of u:

u inhibits the production of v:

u and v degrade exponentially:

a1(u, v) =
α1

1 + vβ ν1 =

[

1

0

]

a3(u, v) =
α2

1 + uγ
ν3 =

[

0

1

]

a2(u, v) = u

a4(u, v) = v

ν2 =

[

−1

0

]

ν4 =

[

0

−1

]

s1

s2

Promoters1

Promoter

Genes1

Genes2 s2

v

u

Two repressors, u and v.

α1 = 50

α2 = 16

β = 2.5

γ = 1
u(0) = v(0) = 0

Gardner, et al., Nature 403, 339-342 (2000)

Example: Analysis of A Synthetic Stochastic Switch



Using Noise to Identify Model Parameters



Why use noise?

• Noise provides an excitation source for the network dynamics

• Resulting distributions of proteins can be measured

• Such distributions provide a lot of information about the dynamics

• Can they be used to identify model parameters?

• Noise has been used to discriminate among competing models
Dunlop et. al (2008). Nature Genetics. Regulatory activity revealed by dynamic correlations in gene expression noise.
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Can one identify the parameters λ = {k1, γ1, k2, γ2, k21} from measurements
of the moments v(t)?

Identification from Moment Information

k2

γ2

x
φ

φ

DNA

mRNA

protein

γ1

y

Identifiability

k1 − k12 · y

y



Identifying Using Steady-State Moments

k2

γ2

x
φ

φ

DNA

mRNA

protein

γ1

y Can the stationary distribution be used to identify
all the parameters?

k1 − k12 · y

• Full identifiability is impossible using only v∞.

• Identifiability is possible if lim
t→∞

E[x(t)x(t + s)] is available.

Full Identifiability with Stationary Moments 

Munsky et. al, MSB, 2009

Cinquemani et al, lect. notes comp. sci, 2009



A =
1
τ

log(G)

Suppose vj := v(tj) has been measured at equally
separated points in time {t0, t1, . . . , tm}

Identifiability from Transient Time-Measurements

�
I
0

�

Multiple Measurementsk2

γ2

x
φ

φ

DNA

mRNA

protein

γ1

y

Identifiability with Multiple Moment Measurements
For m = 6 the model parameters are identifiable.

k1 − k12 · y



Identification with Two Measurements

γ = − 1
2τ

log
�

σ2
1 − µ1

σ2
0 − µ0

�

Suppose the mean and variance are known at two times t0 < t1 <∞,
and define (µ0, σ0) := (µ(t0), σ(t0)) and (µ1, σ1) := (µ(t1), σ(t1)).

Then the transcription parameters are identifiable, and

k = γ
µ1 − exp(−γτ)µ0

1− exp(−γτ)
.

Identifiability of Transcription Parameters

(τ := t1 − t0)

φ
x

DNA

mRNA

k

γ

DNA

• Given v(t0) and v(t1), identifiability of all parameters k1, k2, γ1, γ2

is generically possible.

• An expression exists for finding the parameters.

k2

γ2

x
φ

φ

mRNA

protein

γ1

k1

y

Identifiability of Transcription & Translation 
Parameters



Using Densities to Identify Network Parameters

...

PFSP (t0) = P(t0)
ṖFSP = A(λ)PFSP

PFSP (t1) = P(t1)

PFSP (tN−1) = P(tN−1)

subject toFind λ

Suppose we measure P at different times: P(t0),P(t1), . . . ,P(tN−1)

We can use these to identify unknown network parameters λ:

Using Density:

• Moment equations can be written only in special cases.

• Densities (distributions) contain much more information than first two
moments.

• Using the Chemical Master Equation, we propose to use density measure-
ments for model identification.



Tsien Lab, UCSD

 Agar Plate of Fluorescent 
Bacteria Colonies Flow cytometry

protein A
histogram

protein B
histogram

joint pdf
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Identification of lac Induction 

• E. coli strain DL5905
• Induced with different IPTG concentrations: 5,10, 20, 40, 100 uM
• Induction times: 0, 1, 2, 3, 4, 5 hours before flow cytometry

IPTGIN = IPTGOUT(1− e−rt
)

φ
kL−−→ LacI

GFP
δG−−→ φ

LacI
δL−→ φ

φ
wG−−→ GFP wG =

kG

1 + α[LacI]η
,

δL = δ(0)L + δ(1)L [IPTG]IN

Model

Experiment
9 unknown parameters!
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Identified Model 
vs. Experiment

Model

Experiment

Furthermore, since wG is a nonlinear function of LacI, there is no known analytical expression
for the statistical moments of GFP. Instead, we use a new method, called Finite State Projec-
tion (FSP), for identifying the unknown parameters based on their probability densities (see
Methods). In the identification routine, a parameter search is conducted to find parameter sets
such that the total predicted fluorescence distribution is as close as possible to the measured
distribution in a least squares sense for all time points and IPTG levels.

Fig. 3B shows that the identified model results match the experimentally measured distri-
butions exceptionally well. However, with the full set of ten unknowns in Λ, this identification
is not unique, and we found multiple parameter sets which provide equally good fits. However,
if we utilize additional information about the system, it is possible to reduce the the uncertainty
of the identification. In particular, if we assume that loss of GFP is due solely to dilution, we
can specify the rate δG = 3.8 × 10−4N−1s−1, corresponding to a half life of thirty minutes.
The remaining seven parameters can then be identified as:





kL = 1.7× 10−3 s−1 kG = 1.0× 10−1 s−1 η = 2.1
δ(0)
L = 3.1× 10−4 N−1s−1 δ(1)

L = 5.0× 10−2 (µM · N)−1s−1 α = 1.3× 104 N−η

r = 2.8× 10−5 s−1 µGFP = 220 AU σGFP = 390 AU




 ,

where N refers to molecule number.

Since the assumed model represents a simplified description of multiple events (folding dy-
namics, elongation, spatial motion, etc...), these parameters are best viewed as empirical mea-
surements in the context of the assumed model. Still, it is possible to make some comparisons
between the identified parameters and previous analyses. First, the production and degradation
rates of LacI yield a mean number of kL/γ(0)

L ≈ 5 molecules per cell at steady state in the
absence of IPTG, on the same magnitude of wild-type levels of about ten per cell. Second, the
level of LacI required for half occupancy of the lac operon is [LacI]1/2 = (1/α)1/η = 0.012
which compares well to values 0.006-0.6 molecules (10−11 − 10−9 M, Oehler et al., 1990).
Third, a Hill coefficient of 2.1 is reasonable considering that LacI binds to the operon as a
tetramer. Finally, the degradation rate LacI, δ(0)

L is close to the dilution rate of 3.8× 10−4, re-
flecting the high stability of that protein. In addition to comparing the parameters to values in
the literature, we have used the parameter set identified from 4, 10, and 20 µM IPTG induction
to predict the fluorescence under 40µM IPTG. Fig. 3C shows that these predictions match the
subsequent experimental measurements very well despite the vastly different shapes observed
at the high induction levels.

With single cell experimental techniques such as flow cytometry, it has become possible
to efficiently measure the fluctuations in cellular species. When properly extracted and pro-
cessed with rapidly improving computational tools, these measurements contain sufficiently
rich information as to enable the unique identification of parameters. In principle, this can
be accomplished when accurate distributions are measured at only two distinct time points.
More time points are needed if the distributions are poorly measured, but the idea remains the
same. In this study we have used experimental measurements of cell variability to identify
the parameters of candidate models, and we have shown that noise and transient dynamics are
important to this effort. It is easy to envision the next iterative step in the scientific process,
where one will use these identified models and design the next set of experiments to improve
the identification. Hence, the proposed exploitation of single cell measurements and stochastic

5

Identified 
Parameters

B. Munsky, B. Trinh, M. Khammash, Nature Molecular Systems Biology, in press.



Conclusions

• Randomness “noise” leads to cell-cell variability

‣ Stochastic models are necessary

• Some stochastic analysis tools available (more needed)

‣ Kinetic Monte Carlo 

‣ Moment approximation

‣ Linear noise approximation (van Kampen)

‣ Density computation (FSP) 

• Noise reveals network parameters

‣ Enabling technologies: flow cytometry and FISH/microscopy

‣ A small number of transient measurements suffices

‣ FSP exploits full pdf measurements

‣ Cellular noise (process noise) vs. measurement noise (output noise)
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