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Synthetic biology
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€Ehanging Life
for a purpose

Always: stick molecules into
sufficient networks
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SOl first objective for synthetic
biology:

a dynamic model
of @ metabolic chassis
to facilitate synthetic biology

thermodynamic limit

s Tewards synthetic biology of
heterogeneous cross-talk

e Chassis

* Pathways that manage the
large fluxes essential for
the conserved properties
and Gibbs energy:

First: carbon and energy
metabolism
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lack of interest in efficiency
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thermodynamic limit

» Towards synthetic biology of
heterogeneous cross-talk

Noise and heterogeneity beyond the
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bw to  identify the strongest
controller?

experimentally or
in sflico

md "
Flux control distribution ex sifico: &

High control confirmed
experimentally, though
indirectly)
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s Do what the organism does? Or at least learn
fromi this.
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Flux versus enzyme activity
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gs the organism re-engineer itself by

odulating the step with the highest
control on the flux?
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I -
or: Control # Regulation.-

Control: what limits a flux

Regulation: what the cell
actually does to change the
flux
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Does the cell only regulate the step
with highest control?

or

Does the cell regulate flux by reducing
all enzyme levels equally?

Ph
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1eicell invokes gene expressqn:ig_gptatlon,

Regulation analysis: m
How much of function is regulated by &=
gene expression, how much
metabolically?

v=v(e, X)=e-v(X)

Gene
expression

_ Alne - fold change in amount of enzyme
~ AlnJ —  fold change of flux through it

High control confirmed
experimentally, though
indirectly)



-tategies of regulation of
pathway flux

Does the cell only :gulate the step
with highe¢ .. control?
or

Does the cell regulate flux by reducing
all enzyme levels equally?

= Is Regulation homogeneous (the entire

§ Nitrogen starvation

HK

‘Neither of the obvious
trategies is used by the cell

‘Rather: @ more sophisticated
strategy

Propeller enzymes/genes:

' System Biology laws

C)+C; +Cj +...+C; =
e If all p,’s equal to each other

C)+C} +CJ +..+C’ ) p, =1

e then:

Does the cell or regulate the step
with hig.1e-t control?

or

Does the cell reg. 'z 2 flux by reducing
all enzyme ' rels equally?

egulation understood:
propeller enzymesiand followers

Nitrogen
starvation Pn
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= [ nisc\d
- ENEIEEningG the, self-sustaining JAEtWOrks

y [EwWrengineering strategy?

= Identify and then activate the
propeller enzymes, i.e. use the
regulation of the cell itself:
A different kind of Control Theory & thermodynamic limit
(cf. Murat Arcak): » Towards synthetic biology of
Engineering self-sustaining heterogeneous cross-talk
systems i

Engineering self-
Synthetic Biology 5% sustaining systems

The microsurgery method Such that they do not notice:

— Keep metabolite
concentrations the same

= niss\@

principle /n” e o——
silico:
balance the
fluxes with
expression
levels

A steady state
indeed
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Steady state,
but....

An unstable one

® [owards synthetic
heterogeneous cross-talk

ihe steady conseqguences of
. dynamic noise

Cell-cell heterogeneity
Pattern formation
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jterion: real part of eigenvalue with

7 positive real part

bsieneragy dissipation
llabile structure

Heterogeneity & symmetry breaking
beytﬂqs\tatistical thermodynamics

j ingisystemsymay.expend
'Gibbs free energy to stay
heterogeneous

but how?
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Non=eguilibrium metabollc n0|se htzb'e

Dependence of Protein Noise on Gene
expression noise
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Equal mRNA & protein
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Dependence of Protein Noise on
Rates
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Jihermodynamic view

Noise can contain Gibbs free
energy
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1)= 0.5*DNA 2)= 0.1*mRNA
3)= 0.5*mRNA 4=
®= ()& 1*Protein

# of Simulations.
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Step towards diversity and
robustness?

Implications for synthetic

biology of patterns

— Non-Poisson distribution proves mechanism to
reach heterogeneity beyond triviality

— Engineering the required noise characteristics

See also poster by Vicky
Jackson

IIE‘];?reliminary Sender Cell Model

5 IPTG Molecules 35 IPTG Molecules 200 IPTG
Molecules
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Preliminary Sender Cell Experiments
(Fluorescent Protein Version)
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Higher diversity than with the
simple model

Self-sustaining networks are
amplifying?
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W cordially invite Lou to the

Joint FEBS/Systems X Advanced Lecture Course on

Systems Biology — From Molecules to Function

26 February 2011 — 3 March 2011: Innsbruck, Austria, EU

http://www.febssysbio.net
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doesithe cell engineer itself

VIERELIC biology: microsurgery
serand heterogeneity beyond the

thérmodynamic limit

» Towards synthetic biology of
heterogeneous cross-talk
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