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"Never, anywhere, have | seen so great a
likeness in man or woman — but it is truly
strange! This boy must be the son of
Odysseus, Telékhos, the child he left at
home that year the Akhaian host made
war on Troy."

Homer (800 - 600 BC). The Odyssey, 4, 152-156
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“The problems faced by pre- and post-genomic
genetics are ... much the same -- they all involve
bridging the chasm between genotype and
phenotype.”

-- Sydney Brenner, Science 287: 2173 (2000).

Function of Gene Circuitry

* Superficial answer

+ Genotype determined by the information
encoded in the DNA sequence

+ Phenotype by the context-dependent
expression of the genome

« Circuitry interprets context and orchestrates
expression
* Deeper answer
+ Hierarchy of systems
+ Phenotypes at each level
+ Diversity of design issues
+ Accident or rule




Two Fundamental Unsolved Problems

Genotype Environment Model
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How Many Phenotypes?
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The normal freshwater planarian Schmidtea mediterranea is seen in
the foreground gliding over a composite background of some of the
240 phenotypes (defects) generated by the RNA silencing screen.

Goals

Develop a generic method for constructing the
system design space

Define qualitatively distinct phenotypes
o ldentification
e Enumeration

Analyze and compare their relative fithess

Measure tolerance to global change from one
phenotype to another
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Design Space for Coupling of Expression
in Elementary Gene Circuits
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Coupling of Gene Expression in
Elementary Circuits
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Design Principle for the Coupling of Gene
Expression in Elementary Circuits

Mode
Positive
Positive
Negative
Negative

Capacity Predicted coupling

Small
Large
Small
Large

Inverse & uncoupled
Direct coupled
Direct coupled
Inverse & uncoupled

Hlavacek & Savageau, J. Mol. Biol. 266: 538 (1997)
Wall et al. Nature Review Genetics (2004)




Characteristics of Design Space

Dimensional compression of parameter space
All parameters included within aggregate factors
Geometrical relationships

e Constraints

¢ Physical limits

¢ Qualitative dynamics

o Qualitatively distinct functional regimes

Regions in design space correspond to qualitative
distinct phenotypes
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Interlaced Levels of Description for
a Chemical Reaction

QM wave function Discrete/Stochastic

Potential energy function Continuous/Deterministic

Time/Number Scale

Probability distribution function Discrete/Stochastic
Rate law function Continuous/Deterministic

Boolean function Discrete/Deterministic
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Power-Law Formalism
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Canonical from Four Different Perspectives
o Fundamental
e Local
o Piece-wise
o Recast

Savageau, Chaos 11: 142 (2001)




Generic Construction of Design Space

* Model of the system

* Mass Action representation
¢ Rational function representation
¢ Other

Recast into generalized mass action representation
« Dominant terms produce a piecewise power-law representation
e Bound on the number of phenotypic regions

Local performance in each region described by an S-system
o Signal amplification factors
o Robustness
o Response times

Global performance described by boundaries
o Regions with qualitative distinct phenotypes
e Tolerance
o Design principles

Savageau, et al., PNAS 106: 6435 (2009).

Phage A ¢l Gene Circuit




Phage Lambda Life Cycle
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Molecular Interactions in the
C uit

Dodd, et al. (2005) Vilar, J. M., and Saiz, L. (2005)

Model of The ¢l Gene Circuit and
Its Recast Equations
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Rate of Transcription from Pg,

vpRM (LacZ units)

0.6
CI-CI (uM)

Dodd, et al. Genes Dev. 15: 3013 (2001).




Evaluation of Local Behavior

Analytical Determination of Robustness

Robustness measured by parameter insensitivity
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Conclusion: Perfectly coupled circuit with repressor
control is more robust than the equivalent
completely uncoupled circuit

Savageau, Nature 229: 542 (1971)
Becskei & Serrano, Nature 405: 590 (2000)




Locally Robust in Each Region

Region Criteria
Z18(,p) | IN L(*,R) Sasi ) p, 11N
D [ c | m D c M o W\ & M
Lysogenic regions (stable steady states) Y
11 10.161£0.209*| 0.141%0.164| 0.187+0.247 0.000 | 0.000 | 0.000 MO0 0.000 0.000
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* Mean + standard deviation

Evaluation of Global Behavior




Global Tolerances for the
Lysogenic Phenotype
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Switching Times to Turn ON (blue) and
OFF (red) the ¢l Gene Circuit
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Implications

15-D parameter space
compressed to 2-D design space
Predicted behavior in each region

* Lytic

* Lysogenic

* Hysteretic
Two types of pathology

* Failure to cycle between states

¢ Inappropriate switching
Remarkable asymmetry in
switching times favoring induction
Global tolerance to parameter
variation for the lysogen
Experimental examples of Global
tolerance (Little et al.)

Summary

Motivated by results from successful hand-crafted
design spaces

Proposal for a generic method of constructing design
Space
Design space as a dimensional compression of parameter space
Phenotypes associated with regions of design space
Bound on the number of qualitatively distinct phenotypes
Simple characterization of local behavior within regions
Fitness comparisons among phenotypes
Precisely defined boundaries between regions
Novel definition of global tolerance to changes in phenotype
Facilitates identification of system design principles

Capable of computer automation




Every true artist has been inspired more by the
beauty of lines and color and the relationships
between them than by the concrete subject of the
picture. -- Piet Mondrian (1921)
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