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Many biochemical networks have sigmoidal, or ultrasensitive, responses.
Why!
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Cells must make decisions from sensing stochastic signals using
stochastic biochemistry because all chemistry is stochastic.

For example, consider a rudimentary model of gene expression:
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Substantial stochasticity has been measured in the biochemistry of
many organisms:
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What strategies do cells have for their decision-making?
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By strategy, | mean how a signalling network detects and analyses information not in terms of
the details of biochemistry but in terms of the functions of information-processing that

biochemistry performs.



What are cells learning from sensing!?



Single cells can use signals to anticipate a change in the state of
their environment.

In our intestine, bacteria are exposed to the sugar lactose before the sugar maltose.
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Single cells can use signals to anticipate a change in the state of

their environment.

In our intestine, bacteria are exposed to the sugar lactose before the sugar maltose, but use
the presence of lactose to predict the imminent occurrence of maltose.
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The predictive response is adaptive: bacteria grown in environments where lactose is not followed
by maltose no longer predict the occurrence of maltose upon exposure to lactose.

promoter activity
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How might cells infer the state of the extracellular
environment!

Can we understand the “design” of the biochemistry that
allows them to do so!?



We will consider two apparently different, yet similar, examples:

The mating response in budding yeast
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Control of the mating response of budding yeast



Signal transduction: the mating response in budding yeast is
controlled by a scaffolded cascade of MAP kinases.
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The fraction of shmooing cells varies sigmoidally with the concentration of pheromone.

m Axial budding mBipolar budding m Cell cycle m Shmooing
arrested
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The scaffold Ste5 plays a role in generating the ultrasensitivity.
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The mutant Ste5NP does not bind the kinase Fus3.



We use a protein-fragment complementation assay (PCA) based on Renilla luciferase to
measure interactions between proteins in vivo.

RIucF[2] > Luminescence

RIuCF[1]

[ gene A linker < RIucF[1]| + [gene B linker —{RIucF[2]]




A PCA assay of the interaction between the MAP kinase Fus3 and the scaffold Ste5 shows that the
kinase activity of Fus3 is necessary to generate the ultrasensitivity.
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The scaffold Ste5 activates auto-phosphorylation of the MAP kinase Fus3, but such partially active

Fus3 inhibits mating by promoting phosphorylation of Ste5 and so increases the apparent binding
affinity between Fus3 and Ste5.

Bhattacharyya et al., Science 2006
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We find 3 new potential sites on Ste5 for phosphorylation by Fus3.



Adding back constitutively phosphorylated sites increases the interaction between Ste5 and
Fus3, but it is no longer regulated by x-factor.
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How does the MAP kinase Fus3 dissociate from the scaffold Ste5? The phosphatase Ptcl is recruited
to Ste5 as the concentration of X-factor increases.
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How is the sigmoidal response in the interaction

between the scaffold Ste5 and the MAP kinase
Fus3 generated?
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In the absence of pheromone, Fus3 binds to Ste5, becomes partially
active, phosphorylates Ste5, and then binds strongly to phosphorylated

Ste5, but a phosphatase Ptcl is recruited to Ste5 as pheromone
increases.
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An amplified sensitivity arising from covalent modification in
biological systems

(protein modification/metabolic regulation/switch mechanism/enzyme cascades)

ALBERT GOLDBETER' AND DANIEL E. KOSHLAND, JR.

Zero-order ultrasensitivity from a competition between
two opposing enzymes: a kinase and a phosphatase

ABSTRACT  The transient and steady-state behavior of a re-
versible covalent modification system is examined. When the mod-
ifying enzymes operate outside the region of first-order kinetics,
small percentage changes in the concentration of the effector con-
trolling either of the modifying enzymes can give much larger per-
centage changes in the amount of modified protein. This ampli-
fication of the response to a stimulus can provide additional
sensitivity in biological control, equivalent to that of allosteric pro-
teins with high Hill coefficients.



Consider a kinase acting on a substrate:

W — W*

rate of production of W*

% of phosphorylated substrate W*



Consider the action of a phosphatase if the kinase is de-activated:

w* — W

rate of production of W
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If both the kinase and the phosphatase act, the system reaches steady-state when the rate of
production of W* by the kinase matches the rate of production of W by the phosphatase.

W — W* kinase
wW* — W phosphatase
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concentration

1 1 1 1 1 1 1 1

% of phosphorylated substrate W*



Follow the change in the steady-state concentration of W* as the activity of the phosphatase
increases:
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Let the amount of substrate potentially saturate the kinase and the phosphatase.

non-saturated enzymes

rate of production of W*

rate of production of W

% of phosphorylated substrate W*



As we increase the concentration of the phosphatase, the steady-state concentration
of W* changes sigmoidally.

% of phosphorylated substrate W*



The change in steady-state concentration of W* varies sigmoidally or ultrasensitively as the
activity of the phosphatase increases.

9% i Il o s——9 1¢!

f=

S ¢ ‘
o |

c | | ]
8 \

& |

w | <« i
G | Increasing input and

§_ i l‘ activity of the phosphatase

E o

When the enzymes work near saturation, the kinase is unable to compensate for increases in
the activity of the phosphatase generating large changes in the steady-state concentration of W*,



Fus3 Ptcl

Zero-order ultrasensitivity requires a kinase and a phosphatase competing for the same substrate,
with both working at saturation.

Ste5

But,

[Fus3] > [Steb]
with

[Fus3] ~ 200 nM
[Steb] ~ 50 nM

in vivo.



The kinase and phosphatase bind in two stages to the substrate Ste5.
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Each enzyme first binds to a docking motif on Ste5 before binding and
then potentially performing an enzymatic reaction on a phosphosite.



Two-stage binding and multiple phosphosites on Ste5 implies local saturation of an individual
Fus3 when bound to Steb5.

An enzyme is locally saturated on Ste5 when the probability of an enzyme binding to a
phosphosite rather than dissociating from Ste5 is close to one.



We assume that Ptc| is similarly locally saturated through two-stage binding.




a-Factor & [Ptc1]



With only one phosphosite on Ste5, ultrasensitivity is not robust to changes in the
concentrations of Ste5 and Fus3.
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However, zero-order ultrasensitivity generated by two-stage binding and four phosphosites
on Ste5 gives robust ultrasensitivity.
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We can then reproduce the sigmoidal response detected by PCA with our model.

Fus3-Ste5 interaction
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As predicted, the sigmoidal character of the response is robust to increasing the concentration
of the phosphatase Ptcl.
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As predicted, we observe a loss in the sigmoidal character of the response as we reduce the
degree of local saturation by reducing the number of phosphosites on Steb5.

Fus3 - Ste5 interaction
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The sigmoidal character of the Fus3-Ste5 interaction determines the sigmoidal character of
the fraction of shmooing cells.
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Decision to mate occurs early in the mating pathway. a-factor

¢
The shmooing response to pheromone is highly ultrasensitive. DR
The scaffold Ste5 is an active component of the pathway. - - y
g (5teD MAPKK
Multiple phosphorylation sites on Ste5 and two-stage binding HET R
give an ultrasensitive response robust to the concentrations of it

the other components.
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Control of gene expression in bacteria



Gene expression: the rate of gene expression can be a sigmoidal
function of the number of active transcriptional factors.
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We expect less expression with more repressors.

Promoter Activity
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To measure the response, we create a synthetic network that allows simultaneous

measurement of
(i) the input signal: transcription factor (cl-YFP)
(i) the output: the production rate of the downstream gene (CFP).

CFP production rate
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Experimental design: Fluorescently tagged repressor, in red, dilutes out as cells grow.The
cell responds with new gene expression, in green, when the concentration of repressor
falls sufficiently low.
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We developed the Schnitzcells software for automated image analysis and quantification of
fluorescence levels.

S egment Track Extract
Cells i Cells Fluor.

Phase Contrast Segmented Cell Lineage Time-dependent
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We can measure the fluorescence
intensity levels of cl-YFP and of CFP
in individual cell lineages.

total fluorescence in cell
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We translate the data from fluorescence
versus time to production rate versus the
concentration of the input signal.
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The mean input-output curve (with 95% confidence limits)
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The promoter is activated cooperatively, or ultrasensitively, because two repressors
bind to the DNA and each stabilizes the binding of the other.
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A mutation to the DNA that weakens the binding of one of the repressors reduces the

degree of the sigmoidal character of the response.
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The same principles hold for induction of the lac operon: the
input signal of sugar effectively dilutes out active repressor.
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The same principles hold for induction of the lac operon: the
input signal of sugar effectively dilutes out active repressor.
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Relative Luminescence Units
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Why should both biochemical networks have sigmoidal responses?
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Both networks are responding to a similar challenge.

S ®
og.

A bacterium must
decide whether to
express the
enzymes to
metabolize sugar
or not.

a-factor
o

environment rich
in sugar

A yeast cell must
decide whether to

(8 attempt to mate

or not.

environment poor
in sugar



Consider if the bacterium is deciding in an environment that is in one of two states: a
state high in sugar and a state low in sugar.

Stochasticity can make the intracellular state a poor predictor of the extracellular state.
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Distinguishing from intracellular sugar whether the extracellular environment is in the high (red)
or low (blue) sugar state is mostly unambiguous if stochasticity is low.
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With high large stochasticity, identifying the high or low extracellular state is no longer unambiguous.
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Bayesian inference is a scheme to update prior belief with new data.

prior probability
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For a two-state classification problem, the posterior probability is
often a sigmoidal curve. Cells may respond sigmoidally because they
are inferring the probability of an environmental state.

posterior probability of high sugar state in the environment
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We can understand why one biochemical network is more or less sigmoidal than another.
The degree of overlap between the two distributions (one for each state of the extracellular
environment) determines the sigmoidal character of the posterior probability curve.
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We can use the idea that cells are performing statistical inference
to re-interpret experimental data.

Detailed map of a cis-regulatory input function
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Two-state classification problem:

given the two input distributions determine the probability of the
high sugar state (green curve).
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Inverse two-state classification problem:

given the probability of the high sugar state (green curve) determine
the two input distributions (red and blue distributions).



WVe fit a posterior distribution for the state high in lactose to the
experimental data.
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We can estimate the statistics of the environment that natural
selection has taught E. coli to expect.

Bivariate lognormal distributions for the two environmental states that generate a posterior
probability that fits the promoter activity of the lac operon.
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Aside: an inference module need not have a monotonic output.
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Conclusions

Cells are decision-makers, but they must decide from sensing stochastic
signals using stochastic biochemistry.

We can understand the types of responses cells make by considering that
cells infer properties of their environment.

We need to study the responses of single cells and mimic as best as
possible natural environments.
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