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Applying engineering principles to (re)design
biological systems

Standards Plasticity
Modularity Evolvability
Simplicity Complexity

Reliability Stochasticity
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Applying engineering principles to (re)design
biological systems

Do engineeringgprinciplessapply for the
biological millieu?

Do we missi out¥on certain, unique
properties of the biological millieu by
enforcing engineering principles on it?

How can we implement novelties, thus
innovate in the biological millieu?




EVOLUTIONARY PROCESSES AS DESIGN PRINCIPLES

Can we learn from evolution how to
engineer biological systems?




LEARNING FROM EVOLUTIONARY PROCESSES

Plasticity

Innovation

Functional continuity with structural change

Robustness

Evolvability




Single two-state protein motifs as plastic
building blocks of response dynamics
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Adaptive dynamics with a single
two-state protein
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Regulating the total level of a signaling protein can vary
its dynamics in a range from switch like ultrasensitivity
to adaptive responses
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Features rendering biological systems
robust are byproducts of evolution
under fluctuating (and co-evolving)

environments
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Parasites lead to evolution of robustness against gene
loss in host sighaling networks
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Evolution under Fluctuating Environments Explains
Observed Robustness in Metabolic Networks
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Network final/\/O - Run ID 227

M1 — network evolved in
minimal medium 1. Robustness
is determined in medium 1
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M2 — network evolved in
minimal medium 2. Robustness
is determined in medium 2
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medium 1 and 2. Robustness is determined in
rich medium
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Network final/\VO - Run ID 227

<2 X22 M1 — network evolved in
minimal medium 1. Robustness
is determined in medium 1
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Fluctuating environments result in the evolution of
metabolic networks with more redundant paths and
promiscuous enzymes.

X24

Both features result in robustness against knockouts.

Robustness is lost upon subsequent evolution under
stable environments
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Chemotaxis in Escherichia coli

Chemotaxis in E. coli is based on temporal comparison of
signal levels (i.e. it requires memory and adaptation)

No food gradient: Random walk Increasing food gradient: Biased random walk

Constant

tumbling e

frequency

[CheY-p]

N~

[attractant]
wvw




Evolution of Bacterial Chemotaxis

adaptation mechanism implemented
Szurmant H and Ordal GW (2004), Microbiol. Mol. Biol. Rev.

Adaptation seem to be the best
chemotaxis strategy

Clark DA and Grant LC (2005), PNAS
Celani A and Vergassola M (2010), PNAS

There seem to be no other chemotaxis
strategy possible!

Schnitzer MJ (1993), Phys Rev E




Simplifying chemotaxis behaviour
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Considering chemotaxis
strategies (responses)

L ‘ R
L A R
B B
A A
linear adaptive
Simplest response Mimicking the response
possible seen in E. coli
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o, =0, +A| F o, =0, —Av—d)| F




Optimal chemotaxis strategies

ao, B, A
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Both strategies work!

But, adaptive bugs are smarter
and faster...
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How do these strategies work?

04 Linear Adaptive

density
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What if sensitivity is the driving
selective pressure?

oc=oc0+7»[F] oc:oc0+k(v+d)[F],
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Distinct chemotaxis strategies

low to moderate gain, fully linear Moderate gain, linear-adaptive
response, low Bisoptimal. mix, low Bisoptimal.
0.4 A 0.4 B
0.2] 0.2
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Evolution of chemotaxis!

1. Creation of motor

2. Coupling to cell metabolism
Weak linear response
Long tumbles

— 3. Increase in sensitivity
4. Addition of adaptive response
Hybrid response

1 Cong tumbles
0.8 5.Increase in sensitivity

High B becoming feasible

.
Eg 0.6 6. Domination by adaptive response
{\T; 0.4 7. Short (~instantaneous) tumbles

0.2
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Evolution of chemotaxis:
Thoughts for synthetic biology

A simpler to implement alternative design for
chemotaxis (with mediocre performance that is
good enough for co-localisation with signal)

Where initial designs might evolve to or where
final designs might evolve from is not trivial!
Be aware of the principle of;

Functional continuity with structural change




Stochasticity
Nonlinearity
Evolvability




The observation...

Several bacteria display
distinct phenotypes in an
otherwise clonal population

wu
|

Maamar, H, et al. Noise in gene expression determines
cell fate in Bacillus subtilis. Science 317, 526-529 (2007).

Growth medium (GM1)
Balaban, NQ et al. Bacterial persistence as a phenotypic switch. Science 305, 1622 (2004).




How? The Molecular Basis...

1. Noise
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Noise is inherent in gene m L e
regulatory networks. a
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Raj, A. & v Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135,(2008).




How? The Molecular Basis...
1. Noise A
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Raj, A. & v Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135,(2008).




The Molecular Basis...

2. Bistability
A Initially ON t =750 min
A bistable gene t=0 min
- —

regulatory network

gives rise to
stochastic switching

at population level.
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Figure 1. Cells Switch between Expressing and Nonexpressing States

van Oudenaarden, A. et al. Heritable stochastic switching revealed by single-cell genealogy. PLoS Biol 5, €239 (2007)




The Explanation... o ,
Beneficial heterogeneity:

Under fluctuating environments
stochastic switching can provide

an advantage to the population.
Phenotype
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Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics 167, 523-530 (2004).




Correlation does not imply causation

Is fluctuating selection sufficient
for the evolution of bistable and
noisy gene regulation in
individuals?




In silico evolution under
fluctuating selection

0.5

-| Stable Stable

OFF state ON state Evolving parameters;
a, b, N, and Kp

0.4

0.3

Starting from;
a=b=1, N=0, and Kp=50
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} Environmental switching probability per
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. continue ad infinitum




Cells adapt to fluctuating environments

Deterministic Stochastic
Model Model
\ v =0.05
) v =0.01
v=0.5 v=0.1

mean fitness over population and generation

Evolving parameters;
a, b, N, and Kp

Starting with a linear system;
a=b=1, N=0, and Kp=50




Cells adapt to fluctuating environments

- Under all rates of environmental switching (ES) analysed,
cells showed some level of adaptation

- Stochasticity in gene regulation improved adaptation
only under intermediary rates of ES

- Higher nonlinearity and bistability in gene regulation
evolved only in the stochastic phenotype model and only
under those rates of ES where stochasticity was found to
be beneficial




How can we understand these results?

Why did nonlinearity and bistability
evolve in these simulations? and why
did it evolve only under a certain
range of environmental fluctuations?




. In silico evolution under

.\ fluctuating selection
.> Produce lots of protein

lSwitch phenotype as via mutations,

. Y\st as possible OR?

7Produce very little protein
. Produce lots of protein

. continue ad infinitum




Selection for increased evolvability

Switch phenotype as fast as
possible




Cells evolved increased evolvability
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A model with deterministic environment; Epochs of 10
generations.

Adaptation time is defined as “number of generations
for mean population fitness to reach above 0.7”.




Stochastic Switching

As A Byproduct Of
Evolution of Evolvability

- Fluctuating environments can select for the evolution of
higher evolvability

- Specific nonlinear gene regulatory dynamics underpin
higher evolvability at molecular level

- In the presence of noise, increasing nonlinearity further
enhances diversity and gives rise to bistability

- Bistability and noise can give rise to stochastic switching,
which can immensely enhance adaptation time




LEARNING FROM EVOLUTIONARY PROCESSES

Plasticity

Degradation as a tool to regulate response dynamics

Innovation

Use of evolutionary simulations as design tools: Functional continuity with
structural change

Robustness

Fluctuations as driver and maintainer of structural features underlying
robustness to deleterious mutations

Evolvability

Nonlinearity and noise as potential sources of faster adaptation
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Single two-state protein motifs as
building blocks of response dynamics
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Mathematics to the rescue
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Sensitivity as exaptation for adaptation!
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What previous works have missed

Tumbling is not instantaneous, or it was not always!

Schnitzer MJ (1993), Phys Rev E
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Network final/\VO - Run ID 227

M1 — network evolved in

minimal medium 1. Robustness Re » layi n g t h e ta pe Of

e evolution.
- DO EVOLUTIONARY

M2 — network evolved in
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-Redundancy in metabolic networks is| METABOLIC NETWORKS: WHY HUB
an evolved response to fluctuating| MOLECULES? WHY SCALE-FREE? WHY
environments ROBUST?

=> bugs from stable environments * Toy model of enzymes and metabolites,
should be less versatile with enzyme trade-off for specificity/rate.

e Evolve under selection for biomass
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minimal medium 1, minimal medium == connectivity

2, and rich medium. Robustness is i 1 : i
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indiviually, and over all media R R * Networks evolved under fluctuating

selection display increased robustness




