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Phage A Decision Circuit
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Asynchronous Circuit?
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Stochastic Circuit?
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Stochastic Asynchronous Circuit?

L k2
ki \
jj? b
Tkp I
ka ' ks
ke, O o
R
0.5 kp,

C. Myers et al. (U. of Utah)

Genetic Design Automation

RoSBNet Synthetic Biology Workshop



Stochastic Asynchronous Circuit Results
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Synthetic Biology
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Genetic Engineering vs. Synthetic Biology

@ Genetic engineering (last 30 years):
o Recombinant DNA - constructing artificial DNA through combinations.
o Polymerase Chain Reaction (PCR) - making many copies of this new DNA.
e Automated sequencing - checking the resulting DNA sequence.
@ Synthetic biology adds:
e Standards - create repositories of parts that can be easily composed.
o Abstraction - high-level models to facilitate design.
e Automated construction - separate design from construction.

(source: Drew Endy)
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Genetic Design Automation (GDA)

@ Standards, abstraction, and automated construction are the cornerstones
of Electronic Design Automation (EDA).

@ EDA facilitates the design of more complex integrated circuits each year.

@ Crucial to the success of synthetic biology is an improvement in methods
and tools for Genetic Design Automation (GDA).

@ Experiences with EDA can jump start the development of GDA.
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Current State of GDA (Standards)

@ Registry of standard biological parts used to design synthetic genetic
circuits (http://partsregistry.org).
@ Adequate characterization of these parts is an ongoing effort.

@ Systems Biology Markup Language (SBML) has been proposed as a
standard representation for the simulation of biological systems.

@ Many simulation tools have been developed that accept models in the
SBML format (Copasi, Jarnac, CellDesigner, SimBiology, iBioSim, etc.).
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Current State of GDA (Abstraction)

@ Existing SBML-based GDA tools model biological systems at the
molecular level.

@ A typical SBML model is composed of a number of chemical species (i.e.,
proteins, genes, etc.) and reactions that transform these species.

@ This is a very low level representation which is roughly equivalent to the
layout level for electronic circuits.

@ Designing and simulating genetic circuits at this level of detail is
extremely tedious and time-consuming.
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Current State of GDA (Automated Construction)

@ Several companies have formed that will construct a plasmid from an
arbitrary DNA sequence.

@ ltis still difficult, however, to separate design and construction issues.

@ To achieve this, a GDA tool that supports higher-levels of abstraction for
modeling, analysis, and design of genetic circuits is essential.
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Overview

@ This talk describes our research to develop a GDA tool that utilizes
abstraction to improve the efficiency of analysis and design.

@ The design of a quorum trigger circuit is presented as a case study.
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Genetic Circuit Analysis
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Genetic Circuit Construction
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Genetic Circuit Model (GCM)
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Genetic Circuit Model (GCM)

@ Provides a higher level of abstraction than SBML.

@ Includes only important species and their influences upon each other.

@ GCMs also include structural constructs that allow us to connect GCMs
for separate modules through species ports.
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A Genetic Nor Gate

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



A Genetic Nand Gate
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A Genetic Oscillator
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Molecular Representation
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SBML: Main Elements
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Synthesizing SBML from a GCM Representation

Create degradation reactions
Create open complex formation reactions

o

o

@ Create dimerization reactions
@ Create repression reactions
o

Create activation reactions
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GCM Example
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Degradation Reactions
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Open Complex Formation Reactions
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Dimerization Reactions
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Repression Reactions
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Activation Reactions
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Complete SBML Model
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Classical Chemical Kinetics

@ Uses ordinary differential equations (ODE) to represent the system to be
analyzed, and it assumes:
o Molecule counts are high, so concentrations can be continuous variables.
e Reactions occur continuously and deterministically.
@ Genetic circuits have:
e Small molecule counts which must be considered as discrete variables.
o Gene expression reactions that occur sporadically.

@ ODEs do not capture non-deterministic behavior.
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Stochastic Chemical Kinetics

@ To more accurately predict the temporal behavior of genetic circuits,
stochastic chemical kinetics formalism can be used.

@ Use Gillespie’s Stochastic Simulation Algorithm which tracks the
quantities of each molecular species and treats each reaction as a
separate random event.

@ Only practical for small systems with no major time-scale separations.

@ Abstraction is essential for efficient analysis of any realistic system.
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Automatic Abstraction
Reaction ___| Reaction-based Aggg;%%d __.| State-based SAC __| l\éa;]r;%v
Model Abstraction Model Abstraction Model Analysis
L Stochastic %

Simulation

@ Begins with a reaction-based model in SBML.

@ Automatically abstracts this model leveraging the quasi-steady state
assumption, whenever possible.

@ Encodes chemical species concentrations into Boolean (or n-ary) levels
to produce a stochastic asynchronous circuit (SAC) model.

@ Can now utilize Markov chain analysis.

Kuwahara et al., Trans. on Comp. Sys. Bio. (2006)

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



Automatic Abstraction
. : Abstracted Markov
feaction  Readtion based|__ "meaciion — Siate-based F odel ] ,Chain
L Model / Analysis
Stochastic Results

Simulation

@ Begins with a reaction-based model in SBML.

@ Automatically abstracts this model leveraging the quasi-steady state
assumption, whenever possible.

@ Encodes chemical species concentrations into Boolean (or n-ary) levels
to produce a stochastic asynchronous circuit (SAC) model.

@ Can now utilize Markov chain analysis.

Kuwahara et al., Trans. on Comp. Sys. Bio. (2006)

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



Automatic Abstraction
Reaction ___| Reaction-based Aggg;%%d __.| State-based SAC _| I\éa;]r;%v
Model Abstraction Model Abstraction Model Analysis
L Stochastic %

Simulation

@ Begins with a reaction-based model in SBML.

@ Automatically abstracts this model leveraging the quasi-steady state
assumption, whenever possible.

@ Encodes chemical species concentrations into Boolean (or n-ary) levels
to produce a stochastic asynchronous circuit (SAC) model.

@ Can now utilize Markov chain analysis.

Kuwahara et al., Trans. on Comp. Sys. Bio. (2006)

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



Automatic Abstraction
Reaction ___| Reaction-based Ag:ggt%id __.| State-based SAC _| I\éa;]r;%v
Model Abstraction Model Abstraction Model Analysis
L Stochastic %

Simulation

@ Begins with a reaction-based model in SBML.

@ Automatically abstracts this model leveraging the quasi-steady state
assumption, whenever possible.

@ Encodes chemical species concentrations into Boolean (or n-ary) levels
to produce a stochastic asynchronous circuit (SAC) model.

@ Can now utilize Markov chain analysis.

Kuwahara et al., Trans. on Comp. Sys. Bio. (2006)

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



Automatic Abstraction
Reaction ___| Reaction-based Aggg;%%d __.| State-based SAC __| I\éa;]r;%v
Model Abstraction Model Abstraction Model Analysis
L Stochastic %

Simulation

@ Begins with a reaction-based model in SBML.

@ Automatically abstracts this model leveraging the quasi-steady state
assumption, whenever possible.

@ Encodes chemical species concentrations into Boolean (or n-ary) levels
to produce a stochastic asynchronous circuit (SAC) model.

@ Can now utilize Markov chain analysis.

Kuwahara et al., Trans. on Comp. Sys. Bio. (2006)

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



Automatic Abstraction
Reaction ___| Reaction-based Aggg;%%d __.| State-based SAC __| l\ée;]r:%v
Model Abstraction Model Abstraction Model Analysis
L Stochastic %

Simulation

@ Begins with a reaction-based model in SBML.

@ Automatically abstracts this model leveraging the quasi-steady state
assumption, whenever possible.

@ Encodes chemical species concentrations into Boolean (or n-ary) levels
to produce a stochastic asynchronous circuit (SAC) model.

@ Can now utilize Markov chain analysis.

Kuwahara et al., Trans. on Comp. Sys. Bio. (2006)

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



Automatic Abstraction
Reaction ___| Reaction-based Aggg;%%d __.| State-based SAC _| l\éa;]r;%v
Model Abstraction Model Abstraction Model Analysis
L Stochastic %

Simulation

@ Begins with a reaction-based model in SBML.

@ Automatically abstracts this model leveraging the quasi-steady state
assumption, whenever possible.

@ Encodes chemical species concentrations into Boolean (or n-ary) levels
to produce a stochastic asynchronous circuit (SAC) model.

@ Can now utilize Markov chain analysis.

Kuwahara et al., Trans. on Comp. Sys. Bio. (2006)

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



Dimerization Reduction
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Dimerization Reduction
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Operator Site Reduction (PR)
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Operator Site Reduction (PR)

R

Production of CII

ko * Pr * Ko * RNAP
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Operator Site Reduction (PRE)
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Operator Site Reduction (PRE)

(@11 RNAP Pre
m m m \ m m m
Activated Production of CI Basal Production of CI
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Similar Reaction Combination

Production of CI

(ka * Ka * CII”nc + kb * Ko) * Pre * RNAP

1 + Ko * RNAP + Ka * CII*nc * RNAP

np, p
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Modifier Constant Propagation

Production of CI

(ka * Ka * CII"nc + kb * Ko) * Pre0 * RNAPO

1+ Ko * RNAPO + Ka * CII*nc * RNAPO

np, p
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Final SBML Model

Production of CIT

Decay of CI
kd * fm(CTt)

ko * Pr0 * Ko * RNAPO

1 + Kr * fd(CIt)*nc + Ko * RNAPO

np, p np, p

Production of CI

Decay of CII

kd * CIL (ka * Ka * CII*nc + kb * Ko) * Pre0 * RNAPQ

1 + Ko * RNAPO + Ka * CIT*nc * RNAPO

10 species and 10 reactions reduced to 2 species and 4 reactions
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GCM Advantages

@ Greatly increases the speed of model development and reduces the
number of errors in the resulting models.

@ Allows efficient exploration of the effects of parameter variation.

@ Constrains SBML model such that it can be more easily abstracted
resulting in substantial improvement in simulation time.
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iBioSim: Genetic Circuit Editor
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iBioSim: SBML Editor
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iBioSim: Analysis Engine

@ _iBioSim_File fdt View Tools Melp SME =4 m o Wdd
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OOlgem £ OCxmd €4 sim £
< 5T |_51Mre_ﬂ|bpn-m_h Abstraction Options _ Parameter Editor _ TSO Craph _ Probabiliny Gragh

Modal Fils: CICI sl

O hone @ ) Logical A
Simulation Type: B ODE () Mante Carlo L seML O Network () vowier
Chedse One: 8 Overarite ) Aspend
Pousible Simulators | Anabyzers ThidS LAl

Description Of Selected Simulator:  Embedded Runge-Kutea-Fehibarg (4, 5) mathod

Tirma Limit 21000

Prin tnverval #) (500
Musimum Tims Step inf
Abiclute Lrror LOE-9
Random Seed 314159
LUE 1

Simulation 1D

FUsers | myers fnobackup) Projects | fexample/ (CICILgem

GEM file as SEML file.

ey [ nobuckup Projects | (examy

Creating propertses file:
[Usars lemyers fnobackup/ Projects | | axarple/ sim /CICH peoperties

Myers et al., Bioinformatics (2009)
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ODE Results for the Simple Genetic Oscillator

Comparison of ODE to SSA Results
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SSA Results for the Simple Genetic Oscillator

Comparison of ODE to SSA Results
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SSA Mean Results for the Simple Genetic Oscillator

Comparison of ODE to SSA Results
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Marginal Probability Density Evolution

The SSA predicts random behavior by generating sample paths.
Species’ statistics (mean/stdDev) are found by aggregating these paths.
Complex systems switch states at numerous random times.

Averaging of sample paths “washes out” meaningful behavior.

Instead marginal probability density evolution (MPDE) method can be
used to determine “typical” species statistics.

Winstead et al., IWBDA (2009)
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Example: Circadian Rhythms

@ The VKBL circadian rhythm model from Vilar (2002) and Samad (2005):

Circadian Rhythm, Direct SSA (20 runs).
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Probability Density Evolution

@ lterative form of the Chemical Master Equation (CME):
p(X) =YY p(XIx,R;)p(x,Ry)
Qy j
= Exa[p(X'|x,R)].

where:

x is the system state at time t.

x is the state at time t + dft.

Q is the domain of x.

R; are the possible reactions (Ry is no-reaction).
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Conditional Independence Approximation

@ Suppose the elements of X’ are conditionally independent,
given x and a sequence of reaction events R, so that

M
p(x'|x,R) =]]p(x[xR)
i=1

@ Assuming that the covariances are small, then the updated joint
probability density can be written as

P (X/) = ExR [ﬁp (Xi/|xv R)]
[T En o (3 x.R)].

@ This approximation allows evolving the marginal distributions for x/,
rather than the joint distribution for x.
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SSA-based MPDE

inal . Marginals
Marginals Joint SSA over at t+1
at t at t (t, t+7)
Xq
X1 Q\ X >
y 0O SSA X2 ol
2 O’/' L runs
X
3 Q/ ’
X3
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MPDE Results: Circadian Rhythm Example
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Genetic Muller C-Element
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Toggle Switch C-Element (Genetic Circuit)

A x>0 c \.D.L——/_-/.\/ o
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Nguyen et al., 13th Symposium on Async. Ckts. & Sys., 2007 (best paper)
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Toggle Switch C-Element (GCM)
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RoSBNet Synthetic Biology Workshop

SBML
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Toggle Switch C-Element (Abstracted)

Reduced from 34 species and 31 reactions to 9 species and 15 reactions.
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Toggle Switch C-Element (Simulation)

Toggle Switch C-element

. At
° |

amount

&
2,500 5,000 7,500 10,000 12,500 15,0
time

|+ A -® B + C (abstracted) - C (unabstracted)l

Simulation time improved from 312 seconds to 20 seconds.
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Majority Gate C-Element (Genetic Circuit)
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Speed-Independent C-Element (Genetic Circuit)
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Nullclines and Probability of Failure
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Comparison of Failure Rates for the C-element Designs

High to Low
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Effects of Decay Rates
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Effects of Decay Rates

Switching time for Decay Rate
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Application: Bacterial Consensus

@ One interesting application is designing bacteria that can hunt and kill
tumor cells (Anderson et al.).

@ Care must be taken in determining when to attack potential tumor cells.

@ Can use a genetic Muller C-element and a bacterial consensus
mechanism known as quorum sensing.

@ C-element combines a noisy environmental trigger signal and a density
dependent quorum sensing signal.

@ Activated bacteria signal their neighbors to reach consensus.

BN

Concentration
Threshold

Muller C-element
(state error rate d)

Detect
(error rate €)

Action

cell boundary

Winstead et al., IBE Conference (2008)
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Confidence Amplifier

@ A noisy C-element with a confidence-feedback loop:

C
S

@ The output “rails” to maximum confidence, even if S has low confidence.

@ This configuration only works if the C-element is “noisy”. Otherwise, the
circuit is permanently stuck in its initial state.
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Quorum Trigger Circuit

medium
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Population Dynamics

Inactive Trigger Circuits
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Population Dynamics

Env signal applied
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Population Dynamics

One circuit randomly activates
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Population Dynamics

More circuits activate due to HSL

O00000
O00000
mwn ~000000
O0000O0
O00000O
O00000

(HSL concentration increases sharply)

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



Population Dynamics

Avalanche effect: most cells activate

OCO00000
O0000O0O

wn ~000000
000000

OO0OO0OO0OO0OO
OCO0O0000O

(HSL concentration saturates)

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



Population Dynamics

Env signal is removed.
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Population Dynamics

Time passes.
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Simulation Results

Probability of Toggle gate stimuli, E=0.005000
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Simulation Results

Probability of Toggle gate stimuli, E=0.050000
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Simulation Results

Probability of Toggle gate stimuli, E=0.000000
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Quorum Trigger Design
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Future GDA Research Directions

Genetic circuits have no signal isolation.

Circuit products may interfere with each other and host cell.
Gates in a genetic circuit library usually can only be used once.
Behavior of circuits are non-deterministic in nature.

No global clock, so timing is difficult to characterize.

To address these challenges, we are investigating soft logic models
based on factor graphs and adapting asynchronous synthesis tools to a
genetic circuit technology.
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Biologically Inspired Circuit Design

@ Human inner ear performs the equivalent of one billion floating point
operations per second and consumes only 14 uW while a game console
with similar performance burns about 50 W (Sarpeshkar, 2006).

@ We believe this difference is due to over designing components in order to
achieve an extremely low probability of failure in every device.

@ Future silicon and nano-devices will be much less reliable.

@ For Moore’s law to continue, future design methods should support the
design of reliable systems using unreliable components.

@ Biological systems constructed from very noisy and unreliable devices.
@ GDA tools may be useful for future integrated circuit technologies.
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More Information

@ Linux/Windows/Mac versions of iBioSim are freely available from:
http://www.async.ece.utah.edu/iBioSim/

@ Publications:
http://www.async.ece.utah.edu/publications/

@ Course materials:
http://www.async.ece.utah.edu/~myers/ece6760/
http://www.async.ece.utah.edu/~myers/math6790/

C. Myers et al. (U. of Utah) Genetic Design Automation RoSBNet Synthetic Biology Workshop



Engineering Genetic Circuits

Chapran &
Mathematical and Cr .m;
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